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Abstract. We consider the influence of impurities on the ground-state selection in vector 
spin systems with non-trivial degeneracy of classical ground states. The main result is that, 
in the case of body central tetragonal antiferromagnets. random fieldsgenerated by defects 
can destroy long-range magnetic order. 

In some random crystals the classical ground state is infinitely degenerate, that degener- 
acy being not the consequence of the trivial rotation invariance but the result of an 
additional symmetry caused by competition be tween exchange interactions. Degenerate 
states form a continuous manifold in the phase space of the system, 

The simplest example of systems of that kind are magnets which can be decoupled 
into interpenetrating antiferromagneticsubsystems in such a way that the effective fields 
produced by spins of one subsystem at any spin of the other subsystem cancel. Then the 
subsystems, when treated classically, turned out to be decoupled in the ground-state 
configuration; a rigid rotation of the spins of a single subsystem does not change the 
energy. For example, the type 2 antiferromagnetic structure in the BCC lattice as well as 
the BCT lattice (figure 1) can be decomposed into two subsystems of that kind. 

The structure shown in figure 1 is stable if [J2 /JI l  < 1; J,, Jj < 0, where J, and Jj are 
intrasubsystem coupling constants and J 2  stands for the interaction between spins of 

J I  

Figure 1. The ground-state spin arrangement in 
the BCT antiferromagnet when J ,  < 0. The spin 
systemsin thesitesdenotedbyfullandopencircles 
are decoupled in the classical treatment. 
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different subsystems. Such astructure can be considered asaset of antiferromagnctically 
ordered planes, coupled in the classical treatment only by theJ, interaction. The planes 
form two interpenetrating simple tetragonal antiferromagnets. Thismodel describesthe 
magnetism of lanthanum cuprate when asmall orthorhombic distortion is neglected and 
is also relevant to such materials as K2NiF, 111. 

If J ,  is negligibly small, the staggered magnetizations of planes are independent in 
the mean-field approximation, i.e. we have an infinite number of decoupled subsystems 
(it  should be noted that the degenerate helical states in the scr lattice, studied in [2], are 
only a part of the whole degeneracy manifold). 

The existence of a non-trivial ground-state degeneracy does not necessarily mean 
that a system can be divided into several decoupled parts. We shall also study below the 
infinitely degenerate helices which are classical ground states for the rhombohedral 
antiferromagnets [3.4]. 

I n  all these systems, quantum spin fluctuations remove the classical degeneracy and 
select a ground state [4, 51 (the contribution to this effect due to thermal fluctuations 
was considered in 161). The mechanism was convincingly demonstrated by an inelastic 
neutron scattering experiment [7] where a gap in the 'phason' mode spectrum induced 
by quantum breaking of the degeneracy [S. 81 was observed. 

It is clear that quenched disorder which locally violates a balance between competing 
interactions can lift the degeneracy as well. We would like to emphasize that even small 
amounts or defects could be responsible for ground-state selection because the spin- 
fluctuation corrections to the ground-state energy prove to be small at any values of the 
parameters inside the classical zero-temperature stability region of degenerate phases 
L4.51. 

The main problem considered in this paper is the following: does a random effective 
interaction induced by impurities destroy the long-range magnetic order, or do defects 
select aground state, without destroying order'? Weshow that the behaviour of systems 
considered depends on the type of disorder, the properties of the degeneracy manifold, 
and the space dimension. Bond disorder destroys the long-range ordering provided 
that the degree of ground-state degeneracy is sufficiently high or  the system is two 
dimensional. As for site disorder, in a linear approxjmation of the concentration of 
impurities the magnetic order is preserved and one of the states from the degeneracy 
manifold is selected as the ground state. For the specific case of the site-diluted two- 
dimensional lattice, our result agrees with that obtained earlier by Henley [6]. 

Let us consider a system of classical three-component vectors Si coupled via an 
isotropic exchange interaction. The ground-state spin configuration in a pure crystal is 
supposedto be planar (inthex-yplane). To find thegroundstateof asystem with defects 
we follow [6] and expand the system energy E = - &J,iS,. S U to  second order with 
respect to out-of-plane (angle 8,) and in-plane (angle q,) deviations in the orientation 
of the spin at site i. We assume these deviations to be small and get 
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! P  

E =  E,+ E ,  t E ,  

E ,  = - Sz ~ J , . , [ 8 , B I  - 8; cos(A'Z~,~)] 

E, = - S' E J,, cos(A@,,) 
1.1 

t.1 
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Aij = J ,  cos(AQ,;,) - 6 ,  J i k  COS(AQ,~~) 
k 

hi = xJii sin(AQii) A@.. ‘I = ai - Q, I ’  

i 

The set of azimuthal angles {ai} of spins determines a specific state, chosen as the ground 
state in the ideal crystal. Then we shall calculate the impurity correction to the energy 
and minimize it over all sets of IQ,,}. 

In order for the deviations 0, and q; to be small, all local perturbations of exchange 
energies should be small as well. 

Weconsider twodifferent kindsofdisorder. Firstofall, we consider a bonddisorder, 
when all exchange energies fluctuate about their ideal crystal values J P  independently 
according to a probability distribution with a small variance (V’), (Jr))’. The bond 
disorder can easily arise in a real material as a result of local deformations or disorder 
in an arrangement of non-magnetic atoms mediating the superexchange interaction. 
Another type of randomness arises when some of the host spins are substituted by 
impurity spins. It can be simulated by changing all bonds connected to an impurity spin 
located at a site i: J, = Jp(1 - a). To make all local perturbations small, we assume 
that (Y Q 1 and that the impurity concentration x is small as well. 

Equations (la)-(IC) demonstrate that up to second-order in-plane deviations qi are 
decoupled from out-of-plane deviations Bi. A disorder does not produce terms linear in 
Bi in the expression for the energy but only slightly changes coefficients of the positive 
definite quadratic form E* Hence Oi = 0 for any i in a ground state, i.e. the spin system 
remains coplanar under the weak disorder considered here. 

In contrast, when we consider the change in the energy produced by in-plane dev- 
iations pi, we see that there is linear coupling between q; and the local random fields hi. 
Minimizing the corresponding energy Ep we find that the in-plane deviation in a site i is 
equal to q; = Xi hi(A-’),i. Let us stress that the non-vanishingvaluesof all random fields 
h, are a purely disorder-induced effect caused by fluctuations in J;,. Therefore, it is 
evident that, in order to calculate ground-state energy corrections 6 E  = and the 
mean square (the bar denotesan averagingoverspatial disorder) to thelowest order 
in small random perturbations of coupling constants, we can neglect small fluctuations 
in Aii caused by defects. These fluctuations are irrelevant and could not induce any 
breaking of the long-range magnetic order. Going into momentum space we find that 

Here h, and A ,  are the Fourier transforms of the corresponding quantities. 
The correlation function of random fields hi can be easily calculated using the 

expressions for coupling constantsJii perturbed by impurities presented above. We get 

(Y’XI w, I?  site disorder 
for { 

bond disorder Ih,12 = { 
Po - p ,  

(3) 

where Wq and P, are Fourier transforms of Jzl sin(A@,,) and (v),, sin’(AQ,,), respect- 
ively. 
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Let us now consider the BCT antiferromagnet. Taking J 2  < 0 for definiteness we see 
from equations (Id) and (3) that, at small momentum q, 

d J : x  sin2 0 43939: 
V’ sin2 q2 bond disorder 

site disorder 
for [ (4) 

A ,  - (q1a)2  + j 3 ( q d 2  j 3  = J 3 / J I .  (5) 
Here a and care  lattice constants in the plane and in the z direction, respectively, q1 is 
the momentum component in the x-y plane, 0 is an angle between staggered mag- 
netizations of subsystems and Vis a variance of the J 2  interaction. 

We see from equations (2), (4) and (5 )  that, for site disorder, the integrals (2) turn 
out to be convergent irrespective of the value of j 3 .  The correction to the energy is 
6E - - sin2 0, which means that the ‘orthogonal’ state @ = 2 n/2 is preferred here as 
it was for the two-dimensional model studied in 161. The value of which gives us the 
perturbdtiontheoryparameterisz - d x j f  wherej, = J 2 / J I .  Hence,whenthedisorder 
is small, the perturbation theory is valid, i.e. all local spin deviations from the Nee1 
ground state are small. 

For bond dilution the situation is quite different: since \hJ2 - q’ at small q, the 
integral for 3 shows a power-like divergence at small transversal momentum qL if 
j3 = 0. If j3 is finite but small we have 

z- v’/J%I. (6) 

This means that spin deviations from the Nee1 ground state are large even at weak 
disorder if j3 is sufficiently small. The divergence at j3 = 0 seems to be similar to that 
found by Imry and Ma [9] in the random-field problem, and it is natural to think that at 
j 3  = 0 the long-range order is unstable at any amount of disorder. The j3 interaction 
tends to stabilize the long-range order in a way similar to the effect of a uniform external 
magnetic field in the random-field problem. 

The ground-state instability can be understood qualitatively in the following way. 
As was discussed above, ifjS = 0 we have independent NCel antiferromagnets in planes 
perpendicular to the z axis. If u e  introduce a bond disorder retaining the Nee1 ordering 
of planes, we would not change the total energy since J,, - J!”] = 0. However, suppose 
that we allow spins to deviate from their ground-state configuration in the ideal crystal, 
with the angle between spins in a plane being of the order of n at a distance L. Let us 
consider a region of a plane with a characteristic size L and its interaction with an 
adjacent plane. Because of the non-collinear orientation of spins within each plane we 
have lost an energy of the order of J ,  per region. Similarly to the Imry-Ma [9] problem, 
the energy gain is proportional to the square root of the number of sites located within 
the region considered, i.e. the gain is of the order of VL. Minimizing the energy per site 
with respect to L ,  we find that L - J,/Vand the resultingenergy gain per site due to the 
instability isof the order of V z / ~ J l ~ .  The same estimation of L can be obtained by c u t t i 3  
the integration over qr  in equation (2) off at the lower limit qr - L-I and equating 97 
to unity. The interaction J 3  stabilizes the magnetic order when it exceeds the energy gain 
F/J,. We see that the same estimation follows from equation (6). 

This qualitative picture permits us to understand why site defects do not destroy the 
magnetic ordering in the linear approximation in x .  The main difference between site 
and bond disorder effectsstems from the fact that an isolated site defect does not change 
the energy if spins in each of adjacent planes remain in the Ntel state, while a bond 

‘I 
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defect doeschange the energy. So, for isolated site defects the gain of energy in the non- 
collinear state is not V L ,  but it is proportional to a smaller power of the correlation 
length L. As a result, for a site-disordered system the energy of a random non-uniform 
state is always higher than the energy of the ordered system, which is therefore stable. 
The difference between effectsproduced by site and bond dilution in king systems noted 
in [lo] can be understood in the same way. 

As it was pointed out above, quantum fluctuations of spins always remove the 
degeneracy of a classical ground state. In particular, for the case of a BCT antiferro- 
magnet, quantum corrections remove the soft line in the spectrum of magnons even at 
jj = 0 [ll]. That cuts the divergency of the corresponding intergral for 8, with a 
combination C o l j 2 1 / ~ ,  CO- 0.13 [ll], playing effectively the role of lj31 when esti- 
matingx(see(6)).Takingintoaccount thatinthecaseofabonddilution, V 2  - J5,we 
conclude that quantum fluctuations can stabilize long-range magnetic order in diluted 
BCT antiferromagnets when jz = J 2 / J ,  is sufficiently small: I jz I < CO/*. 

Results for the type 2 antiferromagnetic structure can be obtained from equations 
(5) and (6) by putting Jj = Jl. We see that both types of disorder select the same 
'orthogonal' state with CP = z/2, which has been found in [6] for a site-diluted square 
lattice with sufficiently strong next-nearest-neighbour exchange interaction. It is easy to 
see that, if bond disorder is introduced in the lattice considered in [6] ,  it would cause 
instability in the magnetic order. 

We now turn our attention to the rhombohedral antiferromagnets. As was shown in 
[3], i f j  = lJz/J1l < 3 (JI < 0 and J 2  are the nearest-neighbour in-plane and out-of-plane 
exchange interaction energies), the classical ground states are degenerate helices with 
wavevectors Q forming a line LQ in the momentum space given at j Q 1 by the equations 

Qxa = 2n/3 + (l /f i) jcos(Q,c) + (l/6V'?)j2 cos(2Q,c) 

(fi/Z)Q,a = jsin(Q,c) - &j2 sin(2Q;c). (7) 

Here a and c are the lattice distances in the x-y plane and in, the z direction. The axis 
OX is directed along an elementary translation vector of the in-plane triangular lattice. 

For a helix ground state, AOij = Q . (ri - r,) and we get 

A ,  = 4 ( J p t q  + J Q - ,  - ~ J Q )  (8)  

J, = 2J,jIcos(q,a) + 2 cos($q,a) cos[(fi/Z)q,a] 

+j{cos{4q,c + (fi/2)qyal + 2 cos(+qq,a) cos[4q,c - (fl/6)qy~l}l (10) 
Using equations (8)-(IO) we see that the integral for is convergent in the case of 

site disorder. The disorder-induced correction to the ground-state energy is found to be 
given by the following expression: 

bE = Sz l J ,  Ia2x[ao + jz(al + cos(ZQ,c)] 

a -zjzj* ( sinx(cosx-cosy) * ) ZO. - z2 *dy 3-cosx-2cosxcosy 0 0  

It shows that a helix with Q,c = a/Z is chosen as the true ground state. 
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To study the effect of bond disorder we take an axis OZ in momentum space to he 
collinear to the tangential direction to the line Lp at a point Q = Q, determining the 
wavevector of that helix structure, the stability of which we would like to investigate. 
As J p  has minima at q E L,, the quantities JpniV and AailiV are effectively two dimen- 
sional at small q: 

As to the bond disorder random-field correlation function, it is proportional to a sum of 
the squares of all components of q.  So it is easy to check that the integral (2) for 3 is 
divergent at the lower limit of integration, demonstrating the instability of the structure. 
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